Charged Lepton Flavor Violating Processes and Scalar Leptoquark Decay Branching Ratios in the Colored Zee-Babu Model

We-Fu Chang

National Tsing Hua University (1608.05511, with Siao-Cing Liou, Chi-Fong Wong, Fanrong Xu)

IBS-KIAS Workshop on Particle Physics and Cosmology High-1, Korea, Feb. 5-10, 2017

- $m_{
 u}
 eq 0$. Needs to go beyond the SM
- Key for Majorana ν: Weinberg operator; the only dim-5 SM inv. eff. operator, L ≠ 0, B = 0.

$$\frac{(LH)^2}{\Lambda}$$

- dilepton $L \neq 0, B = 0$: see-saw 1,2,3.
- Leptoquark (LQ) $L \neq 0$, $B \neq 0$ is also a legitimate candidate
- To have B = 0, either (1) 2 LQs with $L_1 : L_2 \neq B_1 : B_2$ or (2)LQ + Di-quark (DQ) with $L = 0, B \neq 0$.
- We go for 1LQ+1DQ and address the connection between M_{ν} and experimental signatures.

LQ DQ mass bounds

LQ mass direct search bound (95% CL., GeV, β = 1(0.5)).
 LQ decay BR into *lq* and ν*q* denoted as β and (1 − β), and λ:
 Yukawa coupling for *lq*Δ. The LQ is assumed to decay into leptons within only one specific generation.

	1st gen.	2nd gen.	3rd gen.
CMS	1005(845)	1070(785)	634
ATLAS	660(607)	685(594)	534
ZEUS	$699(\lambda = 0.3)$		

- For an E_6 -type DQ, CMS study gives $m_S > 6$ TeV.
- Very sensitive to the assumptions of decay BR as well as the flavor dependant coupling strengthes.
- We take $m_S = 7 \, {
 m TeV}$ and $m_\Delta = 1 \, {
 m TeV}$ as the benchmark values

Colored Zee-Babu Model

• Relevant Lagrangian for $\Delta(3,1,-1/3)$ and S(6,1,-2/3):

$$-\left[\overline{L_{i}^{C}}(Y_{L})_{ij}i\sigma_{2}Q_{j}+\overline{(\ell_{Ri})^{C}}(Y_{R})_{ij}u_{Rj}\right]\Delta^{*}-\overline{(d_{Ri})^{C}}(Y_{s})_{ij}d_{Rj}S^{*}$$
$$+y_{ij}^{\Delta}\overline{(u_{Ri})^{C}}d_{Rj}\Delta+\mu\Delta^{*}\Delta^{*}S+h.c.$$

i, *j*: flavor indices, SU(3) indices suppressed. Y_S : symmetric in flavor

• Proton decay $\propto (Y_{L/R}y_{11}^{\Delta})^2$ can be evaded. (1)A very small y_{11}^{Δ} . (2) y^{Δ} can be eliminated by for example some Z_2 parities $\{-, -, +, +, +, -, +\}$ assigned to $\{L, I_R, Q, u_R, d_R, \Delta, S\}$ respectively.

Colored Zee-Babu Model

$$\begin{split} (M_{\nu})_{ii'} &= 24\mu(Y_L)_{ij}m_{dj}I_{jj'}(Y_s^{\dagger})_{jj'}m_{dj'}(Y_L^{\dagger})_{j'i'}, \\ I_{jj'} &= \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \frac{1}{(k_1^2 - m_{dj'}^2)} \frac{1}{(k_1^2 - m_{\Delta}^2)} \frac{1}{(k_2^2 - m_{dj'}^2)} \frac{1}{(k_2^2 - m_{\Delta}^2)} \frac{1}{(k_1 + k_2)^2 - m_S^2} \\ I_{jj'} &\simeq I_{\nu} \equiv \frac{1}{(4\pi)^4} \frac{1}{M^2} \frac{\pi^2}{3} \tilde{I} \left(\frac{m_{\Delta}^2}{m_{\Delta}^2} \right), \quad M \equiv \max(m_{\Delta}, m_S) \\ \tilde{I}(x) &= \begin{cases} 1 + \frac{3}{\pi^2} (\ln^2 x - 1) \text{ for } x \gg 1, \\ 1 & \text{for } x \to 0. \end{cases}$$

• Write
$$M_
u = Y_L \omega Y_L^T$$
, $\omega_{jj'} \equiv 24 \mu I_
u m_j m_{j'} (Y_s^\dagger)_{jj'}$.

Qualitatively,

$$m_{
u} \sim rac{\mu m_b^2 Y_L^2 Y_S}{32\pi^2 M^2} \sim 0.06 \mathrm{eV} imes \left(rac{Y_L^2 Y_S}{10^{-6}}
ight) imes \left(rac{\mathrm{TeV}}{M^2/\mu}
ight)$$

2-loop, typical values $Y_L, Y_S \sim$ 0.01 and $\mu, M \sim$ 1 TeV, sub-eV m_{ν} w.o. excessively fine tuning.

• scaling: $Y_L^2 Y_S = \text{const, trivial but useful.}$

Iterative solution for Y_L

- Working assumption: Democratic Y_S (easy in extra-dim).
- Since $m_b \gg m_s \gg m_d$

$$\omega^{(0)} = 24\mu I_{\nu} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & m_b m_s (Y_S)_{23}^* \\ 0 & m_b m_s (Y_S)_{23}^* & m_b^2 (Y_S)_{33}^* \end{pmatrix}$$

(1)
$$\mathcal{O}\left(\frac{\omega^{(1)}}{\omega^{(0)}}\right) \sim \mathcal{O}\left(\frac{m_d}{m_b}\right)$$
. (2) $M_{\nu}^{(0)} = Y_L \omega^{(0)} Y_L^T$ is of rank-2,
(3) det $M_{\nu}^{(0)} = 0$. (4) Lightest one $\sim (m_d/m_b) \times \max(m_{\nu})$,
(5) quasi-degenerate disfavored.

• once $\{\mu, m_S, m_\Delta, (Y_S)_{13,23,33}, (Y_L)_{13}\}$, Y_L can be determined

$$\begin{split} & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{\gamma}_L)_{13}}{(\dot{M}_{-1})_{11}} \left[(\dot{M}_{+})_{12} \pm \sqrt{(\dot{M}_{+})_{12}^2 - (\dot{M}_{+})_{11}(\dot{M}_{+})_{23}} \right], \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{\gamma}_L)_{13}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_L)_{11}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{12}^{(0)} = \frac{(\dot{M}_{+})_{11} - B_{\sigma}n_{11}^{2}(\dot{\gamma}_{23}^{(1)}(\dot{\gamma}_{23}^{(0)})_{23}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{L})_{11}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{11} - B_{\sigma}n_{11}^{2}(\dot{\gamma}_{23}^{(1)}(\dot{\gamma}_{23}^{(0)})_{23}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{L})_{11}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - B_{\sigma}n_{11}^{2}(\dot{\gamma}_{23}^{(1)}(\dot{\gamma}_{23}^{(0)})_{23}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{L})_{13}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - B_{\sigma}n_{11}^{2}(\dot{\gamma}_{23}^{(1)}(\dot{\gamma}_{23}^{(0)})_{23}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{23}^{(0)}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - (\dot{M}_{-})_{13}^{2}(\dot{\gamma}_{23}^{(0)})_{23}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - (\dot{M}_{-})_{23}^{2}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - (\dot{M}_{-})_{13}^{2}(\dot{\gamma}_{23}^{(0)})_{23}}}{2B_{\sigma}m_{\sigma}(\dot{\gamma}_{23}^{(0)})_{23}}, \\ & (\dot{\gamma}_L)_{23}^{(0)} = \frac{(\dot{M}_{-})_{13} - (\dot{M}_{-})_{23}^{2}(\dot{\gamma}_{23}^{(0)})_{23}}}{2B_{\sigma}m_{\sigma}($$

Tree-level FV

$$\Delta \mathcal{L}_{\text{eff}} = \begin{bmatrix} (\underline{Y_{L}^{*})_{ml}(Y_{R})_{lj}} \\ 2m_{\Delta}^{2} \\ 2m_{\Delta}^{2} \\ \overline{Qm}_{\Delta}^{*} \\ \overline{Qm}_{\Delta}^{$$

- m_{ν} requires nonzero Y_L .
- Minimal flavor violation and $Y_R = 0$
- from $K \bar{K}$ mixing, $|Y_S| < 9 \times 10^{-3} \times (m_S/7 {\rm TeV})$.

$$|(Y_S)_{11}(Y_S)^*_{22}| < 1.92 \times 10^{-6} \times (m_S/{
m TeV})^2$$

- UV: (1) extra-dim (2) U(1) symmetry
- pheno side: If $Y_R \neq 0$, the 1-loop EDM

$$d_\ell \sim rac{N_c}{16\pi^2} rac{m_t}{m_\Delta^2} \mathrm{Im}[Y_L Y_R^*]$$

For $m_{\Delta} = 1 \text{TeV}$, $|Y_L| \sim |Y_R| \sim 0.01$, CP phase of order one, the typical electron EDM is around $10^{-24} e$ -cm (currently, $|d_e| < 8.7 \times 10^{-29} e$ -cm.)

• Like in many models, a pressing theoretical issue. A plain solution: $m_{\Delta} \gtrsim 100 {\rm TeV}$ but the phenomenology.

Some considerations for $Y_R = 0$

• If $Y_R = 0$, EDM at 3-loop level.

$$d_{\ell} \sim \frac{\alpha N_c}{(16\pi)^3} \frac{m_{\ell}}{m_{\Delta}^2} \mathbf{Im} \left[(Y_L)_{\ell k} V_{kj}^{CKM} (Y_L^{\dagger})_{ji} U_{i\ell}^{PMNS} \right]$$

- If $Y_L \sim 0.01$, $m_{\Delta} = 1 \text{TeV}$, $\sim O(1)$ CP phase, $|d_e| \lesssim 10^{-37} e$ -cm. Slightly larger than SM d_e .
- once d_e was measured, either the $Y_R = 0$ assumption with $m_{\Delta} \sim \mathcal{O}(\text{TeV})$ is out or more NP beyond the cZBM.

 $\mu \rightarrow e\gamma$

۲

$$egin{split} \mathcal{L} \supset rac{1}{2} ar{\ell}' \left(d_L^{\prime\prime\prime} \mathbb{P}_{\!\!L} + d_R^{\prime\prime\prime} \mathbb{P}_{\!\!R}
ight) \sigma^{\mu
u} \ell F_{\mu
u} + h.c. \ & \Gamma(\ell o \ell'\gamma) \simeq rac{m_\ell^3}{16\pi} (|d_L^{\prime\prime\prime}|^2 + |d_R^{\prime\prime\prime}|^2) \end{split}$$

• A straightforward calculation yields

$$d_{R}^{ll'} = -\frac{N_{c}e}{16\pi^{2}m_{\Delta}^{2}} \left[\left(m_{l'}(Y_{R}^{*})_{l'q}(Y_{R}^{T})_{ql} + m_{l}(Y_{L}^{*})_{l'q}(Y_{L}^{T})_{ql} \right) \mathcal{F}_{1}(r_{q}) + m_{q}(Y_{L}^{*})_{l'q}(Y_{R}^{T})_{ql} \mathcal{F}_{2}(r_{q}) \right] ,$$

 $q = u, c, t, r_q \equiv m_q^2/m_{\Delta}^2$. $d_L^{ll'}$ by simply $Y_L \leftrightarrow Y_R$. The loop functions have limit $\mathcal{F}_1(x) \rightarrow 1/12$ and $\mathcal{F}_2(x) \rightarrow 7/6 + 2 \ln x/3$ when $x \rightarrow 0$.

• In general, $Y_R = 0$ also minimizes 1-loop cLFV.

 $Z \rightarrow II'$

• The most general $Z \rightarrow \overline{I}I'$ amplitude:

$$\begin{split} i\mathcal{M} &= ie\overline{u}(p') \left[\left(c_R^Z \mathbb{P}_R + c_L^Z \mathbb{P}_L \right) \left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{m_Z^2} \right) \gamma^\nu \right. \\ &+ \frac{1}{m_Z} \left(d_L^Z \mathbb{P}_L + d_R^Z \mathbb{P}_R \right) \left(i\sigma_{\mu\nu} q^\nu \right) \right] v(-p) \epsilon^\mu(q) \,, \end{split}$$

(c, d: dimensionless, projection on anti-particle.) • only c_R^Z is kept in the study.

•
$$c_R^Z \sim Y_L^2 (M_Z/m_{\Delta})^2$$
. $d/c_R^Z \sim (m_I/M_Z)$ and $c_L^Z/c_R^Z \sim (m_I/M_Z)^2$

• final result in numerical form:

$$\mathcal{B}(Z o ar{\ell} \ell') \simeq 1.46 imes 10^{-7} \left| \sum_{q=u,c,t} a_q^Z(Y_L)_{\ell'q}^*(Y_L)_{\ell q} \right|^2 imes \left(rac{ ext{TeV}}{m_\Delta}
ight)^4 \,,$$

where
$$a_u^Z = a_c^Z \simeq -0.125 - 0.077 \mathbf{i} = -0.1468 e^{i 31.63^\circ}$$
 and $a_t^Z = 1$.

• The imaginary part of $a_{u,c}^Z$ comes from the on-shell light quarks in the Z decay. CP violation is observable.

Numerical study

- once {μ, m_S, m_Δ, (Y_S)_{13,23,33}} plus anyone of Y_L's are fixed, all remaining 8 Y_L's iteratively determined from m_ν matrix and U_{PMNS}. m_Δ = 1TeV and m_S = 7TeV. For each config. μ randomly chosen from [0.1, 1]TeV, sin²θ_{12,13,23}, Dirac phase δ_{cp}: 1 sigma from global fit
- (1)All $|Y_L|$'s are less than one. (2) all TLFV (3) 1-loop cLFV :

$\mathcal{B}(\mu^+ \to e^+ \gamma)$	$< 5.7 \times 10^{-13}, 90\%$ C.L.
$\mathcal{B}(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}, 90\%$ C.L.
$\mathcal{B}(\tau \to e\gamma)$	$< 3.3 \times 10^{-8}, 90\%$ C.L.
$\mathcal{B}^Z_{ au\mu}$	$< 1.2 \times 10^{-5}, 95\%$ C.L.
$\mathcal{B}_{ au e}^{\dot{Z}}$	$< 9.8 \times 10^{-6}, 95\%$ C.L.
$\mathcal{B}^Z_{\mu e}$	$< 7.5 \times 10^{-7}, 95\%$ C.L.

• Dimensionless parameter:

$$\epsilon_{ijkn} \equiv \frac{(Y_L)_{ik}(Y_L)_{jn}}{4\sqrt{2}G_F m_\Delta^2} \,,$$

• Comprehensive study: 1008.0280

ϵ_{ee11}	10^{-3}	ϵ_{ee12}	9.4×10^{-6}	ϵ_{ee13}	3.9×10^{-3}
ϵ_{ee22}	10^{-2}	ϵ_{ee23}	10^{-3}	ϵ_{ee33}	$9.2 imes 10^{-2}$
$\epsilon_{\mu\mu11}$	$7.3 imes 10^{-3}$	$\epsilon_{\mu\mu12}$	$9.4 imes 10^{-6}$	$\epsilon_{\mu\mu13}$	$3.9 imes 10^{-3}$
$\epsilon_{\mu\mu22}$	1.2×10^{-1}	$\epsilon_{\mu\mu23}$	10^{-3}	$\epsilon_{\mu\mu33}$	$6.1 imes 10^{-2}$
$\epsilon_{\tau\tau 11}$	10^{-2}	$\epsilon_{\tau\tau 12}$	$9.4 imes 10^{-6}$	$\epsilon_{\tau\tau 13}$	$3.9 imes 10^{-3}$
$\epsilon_{\tau\tau 22}$	$1.2 imes 10^{-1}$	$\epsilon_{\tau\tau 23}$	10^{-3}	$\epsilon_{\tau\tau 33}$	$8.6 imes10^{-2}$
$\epsilon_{e\mu 11}$	$8.5 imes 10^{-7}$	$\epsilon_{e\mu 12}$	9.4×10^{-6}	$\epsilon_{e\mu13}$	$3.9 imes 10^{-3}$
$\epsilon_{e\mu 21}$	9.4×10^{-6}	$\epsilon_{e\mu22}$	0.24	$\epsilon_{e\mu 23}$	10^{-3}
$\epsilon_{e\mu 31}$	3.9×10^{-3}	$\epsilon_{e\mu32}$	10^{-3}	$\epsilon_{e\mu 33}$	$6.6 imes 10^{-2}$
$\epsilon_{e\tau 11}$	$8.4 imes 10^{-4}$	$\epsilon_{e\tau 12}$	$9.4 imes 10^{-6}$	$\epsilon_{e\tau 13}$	$3.9 imes 10^{-3}$
$\epsilon_{e\tau 21}$	9.4×10^{-6}	$\epsilon_{e\tau 22}$	0.24	$\epsilon_{e\tau 23}$	10^{-3}
$\epsilon_{e\tau 31}$	3.9×10^{-3}	$\epsilon_{e\tau 32}$	10^{-3}	$\epsilon_{e\tau 33}$	0.2
$\epsilon_{\mu\tau 11}$	$9.4 imes 10^{-4}$	$\epsilon_{\mu\tau 12}$	$9.4 imes 10^{-6}$	$\epsilon_{\mu\tau 13}$	$3.9 imes 10^{-3}$
$\epsilon_{\mu\tau 21}$	9.4×10^{-6}	$\epsilon_{\mu\tau 22}$	0.24	$\epsilon_{\mu\tau 23}$	10^{-3}
$\epsilon_{\mu\tau 31}$	$3.9 imes 10^{-3}$	$\epsilon_{\mu\tau 32}$	10^{-3}	$\epsilon_{\mu\tau 33}$	1

cLFV for IH

 $m_{\Delta} = 1 \text{TeV}$ and $|(Y_S)_{33}| = 0.0097$. Dashed lines: current limits at 90%C.L. If $Y_S \to Y_S / \lambda$, $BR \to \lambda^2 BR$.

cLFV for NH

 $m_{\Delta} = 1 \text{TeV}$ and $|(Y_S)_{33}| = 0.0097$. Dashed lines: current limits at 90%C.L. If $Y_S \to Y_S / \lambda$, $BR \to \lambda^2 BR$.

Predictions

۲

$$\begin{aligned} \mathcal{B}^{Z}_{\ell\ell'} &\equiv \mathcal{B}(Z \to \bar{\ell}\ell') + \mathcal{B}(Z \to \ell\bar{\ell}') \\ \eta_{\ell\ell'} &\equiv \mathcal{B}(Z \to \bar{\ell}\ell') - \mathcal{B}(Z \to \bar{\ell'}\ell) \,. \end{aligned}$$

 \bullet Interesting at Z-factory $\sim 10^{12-13}$ per year. [NH(IH)]

	lower bounds	upper bounds (for $Y_R = 0$)
$\mathcal{B}(\mu \to e\gamma)$	$3.05 \times 10^{-16} \ (3.98 \times 10^{-18})$	$5.7(5.7) \times 10^{-13}$
$\mathcal{B}(\tau \to e\gamma)$	$3.16 \times 10^{-16} \ (2.03 \times 10^{-18})$	$2.3(0.51) \times 10^{-9}$
$\mathcal{B}(\tau \to \mu \gamma)$	$4.67 \times 10^{-17} \ (1.68 \times 10^{-16})$	$3.4(2.8) \times 10^{-8}$
$\mathcal{B}^{Z}_{e\mu}$	$2.5 \times 10^{-16} \ (4.9 \times 10^{-14})$	$2.2(8.7) \times 10^{-11}$
$\mathcal{B}_{e au}^{\dot{Z}}$	$2.9 \times 10^{-16} \ (4.6 \times 10^{-14})$	$3.6(1.0) \times 10^{-10}$
$\mathcal{B}_{\mu au}^Z$	$2.5 \times 10^{-14} \ (7.8 \times 10^{-15})$	$5.5(4.5) \times 10^{-9}$
$\eta_{\mu e}$	$^{+.68}_{67}(^{+2.1}_{97}) \times 10^{-13}$	$^{+2.6}_{-5.4}(^{+9.3}_{-8.1}) \times 10^{-13}$
$\eta_{ au e}$	$^{+2.4}_{20}(^{+.20}_{-1.2}) \times 10^{-12}$	$^{+2.3}_{56}(^{+.22}_{10}) \times 10^{-11}$
$\eta_{ au\mu}$	$^{+2.3}_{78}(^{+1.3}_{-1.3}) \times 10^{-11}$	$^{+3.7}_{-8.1}(^{+3.0}_{-3.1}) \times 10^{-11}$

- Double ratios are useful .
- Neutrino mass hierarchy can be determined if meet any of the following

Double Ratio	IH	NH
$R_1 \equiv \mathcal{B}_{\mu\tau}^Z / \mathcal{B}(\mu \to e\gamma)$	$R_1 > 10^4$ or $R_1 < 0.1$	N.A.
$R_2 \equiv \mathcal{B}_{e\tau}^Z / \mathcal{B}(\mu \to e\gamma)$	$R_2 > 10^3$	$R_2 < 0.1$
$R_3 \equiv \mathcal{B}_{e\mu}^Z / \mathcal{B}(\mu \to e\gamma)$	$R_{3} > 10^{2}$	$R_3 < 0.1$
$R_4 \equiv \mathcal{B}(\tau \to \mu \gamma) / \mathcal{B}(\mu \to e \gamma)$	$R_4 > 10^6$	$R_4 < 0.003$
$R_5 \equiv \mathcal{B}(\tau \to \mu \gamma) / \mathcal{B}(\tau \to e \gamma)$	N.A.	$0.03 < R_5 < 30$
$R_6 \equiv \mathcal{B}(\tau \to e\gamma) / \mathcal{B}(\mu \to e\gamma)$	$R_{6} < 0.03$	N.A.
$R_7 \equiv \mathcal{B}^Z_{\mu au}/\mathcal{B}^Z_{\mu e}$	$R_{7} < 1.0$	$R_7 > 3 \times 10^4$
$R_8 \equiv \mathcal{B}_{e\tau}^Z / \mathcal{B}_{e\mu}^Z$	N.A.	$R_8 > 10^2$
$R_9 \equiv \mathcal{B}_{ au\mu}^Z / \mathcal{B}_{ au e}^{\dot Z}$	$R_{9} < 0.01$	$R_9 > 3 \times 10^4$

• $R_5(NH)$ and $R_7(IH)$ look promising.

Charged Lepton Flavor Violating Processes and Scalar Leptoquar

LQ decay BRs

- IH: (1) $B_e^{\Delta} \sim 1.0$ or (2) $B_{\mu}^{\Delta} \sim 55\%$ and $B_{\tau}^{\Delta} \sim 45\%$. • NH: $0.7 \lesssim B_{\mu}^{\Delta} + B_{\tau}^{\Delta} \lesssim 1.0$ and $0.2 \lesssim B_{\tau}^{\Delta} \lesssim 0.8$. In other words, $B_e^{\Delta} \lesssim 0.3$
- Current direct search assumptions are not founded.

Figure 7. LQ decay branching ratios for (a) IH, (b) NH.

- Working assumption: democratic Y_S , $Y_R = 0$, Y_L determined by m_{ν}
- interesting lower bounds on cLFV (Z-factory)
- double ratios and nu mass hierarchy
- definite LQ decay BRs.